Skip to main content

ClickHouse

There are 2 sources that provide integration with ClickHouse

Source ModuleDocumentation

clickhouse

This plugin extracts the following:

  • Metadata for tables, views, materialized views and dictionaries
  • Column types associated with each table(except *AggregateFunction and DateTime with timezone)
  • Table, row, and column statistics via optional SQL profiling.
  • Table, view, materialized view and dictionary(with CLICKHOUSE source_type) lineage
tip

You can also get fine-grained usage statistics for ClickHouse using the clickhouse-usage source described below.

Read more...

clickhouse-usage

This plugin has the below functionalities -

  1. For a specific dataset this plugin ingests the following statistics -
    1. top n queries.
    2. top users.
    3. usage of each column in the dataset.
  2. Aggregation of these statistics into buckets, by day or hour granularity.

Usage information is computed by querying the system.query_log table. In case you have a cluster or need to apply additional transformation/filters you can create a view and put to the query_log_table setting.

note

This source only does usage statistics. To get the tables, views, and schemas in your ClickHouse warehouse, ingest using the clickhouse source described above.

Read more...

Module clickhouse

Certified

Important Capabilities

CapabilityStatusNotes
Data ProfilingOptionally enabled via configuration
Detect Deleted EntitiesEnabled via stateful ingestion

This plugin extracts the following:

  • Metadata for tables, views, materialized views and dictionaries
  • Column types associated with each table(except *AggregateFunction and DateTime with timezone)
  • Table, row, and column statistics via optional SQL profiling.
  • Table, view, materialized view and dictionary(with CLICKHOUSE source_type) lineage
tip

You can also get fine-grained usage statistics for ClickHouse using the clickhouse-usage source described below.

CLI based Ingestion

Install the Plugin

pip install 'acryl-datahub[clickhouse]'

Starter Recipe

Check out the following recipe to get started with ingestion! See below for full configuration options.

For general pointers on writing and running a recipe, see our main recipe guide.

source:
type: clickhouse
config:
# Coordinates
host_port: localhost:9000

# Credentials
username: user
password: pass

# Options
platform_instance: DatabaseNameToBeIngested

include_views: True # whether to include views, defaults to True
include_tables: True # whether to include views, defaults to True

sink:
# sink configs

#---------------------------------------------------------------------------
# For the HTTP interface:
#---------------------------------------------------------------------------
source:
type: clickhouse
config:
host_port: localhost:8443
protocol: https

#---------------------------------------------------------------------------
# For the Native interface:
#---------------------------------------------------------------------------

source:
type: clickhouse
config:
host_port: localhost:9440
scheme: clickhouse+native
secure: True

Config Details

Note that a . is used to denote nested fields in the YAML recipe.

View All Configuration Options
Field [Required]TypeDescriptionDefaultNotes
bucket_duration [✅]EnumSize of the time window to aggregate usage stats.DAY
database [✅]stringdatabase (catalog)None
database_alias [✅]string[Deprecated] Alias to apply to database when ingesting.None
end_time [✅]string(date-time)Latest date of usage to consider. Default: Current time in UTCNone
host_port [✅]stringClickHouse host URL.localhost:8123
include_materialized_views [✅]booleanTrue
include_table_lineage [✅]booleanWhether table lineage should be ingested.True
include_table_location_lineage [✅]booleanIf the source supports it, include table lineage to the underlying storage location.True
include_tables [✅]booleanWhether tables should be ingested.True
include_views [✅]booleanWhether views should be ingested.True
options [✅]objectAny options specified here will be passed to SQLAlchemy's create_engine as kwargs. See https://docs.sqlalchemy.org/en/14/core/engines.html#sqlalchemy.create_engine for details.None
password [✅]string(password)passwordNone
platform_instance [✅]stringThe instance of the platform that all assets produced by this recipe belong toNone
platform_instance_map [✅]map(str,string)None
protocol [✅]stringNone
secure [✅]booleanNone
sqlalchemy_uri [✅]stringURI of database to connect to. See https://docs.sqlalchemy.org/en/14/core/engines.html#database-urls. Takes precedence over other connection parameters.None
start_time [✅]string(date-time)Earliest date of usage to consider. Default: Last full day in UTC (or hour, depending on bucket_duration)None
username [✅]stringusernameNone
env [✅]stringThe environment that all assets produced by this connector belong toPROD
domain [✅]map(str,AllowDenyPattern)A class to store allow deny regexesNone
domain.key.allow [❓ (required if domain is set)]array(string)None
domain.key.deny [❓ (required if domain is set)]array(string)None
domain.key.ignoreCase [❓ (required if domain is set)]booleanWhether to ignore case sensitivity during pattern matching.True
profile_pattern [✅]AllowDenyPatternRegex patterns to filter tables (or specific columns) for profiling during ingestion. Note that only tables allowed by the table_pattern will be considered.{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
profile_pattern.allow [❓ (required if profile_pattern is set)]array(string)None
profile_pattern.deny [❓ (required if profile_pattern is set)]array(string)None
profile_pattern.ignoreCase [❓ (required if profile_pattern is set)]booleanWhether to ignore case sensitivity during pattern matching.True
schema_pattern [✅]AllowDenyPatternRegex patterns for schemas to filter in ingestion. Specify regex to only match the schema name. e.g. to match all tables in schema analytics, use the regex 'analytics'{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
schema_pattern.allow [❓ (required if schema_pattern is set)]array(string)None
schema_pattern.deny [❓ (required if schema_pattern is set)]array(string)None
schema_pattern.ignoreCase [❓ (required if schema_pattern is set)]booleanWhether to ignore case sensitivity during pattern matching.True
table_pattern [✅]AllowDenyPatternRegex patterns for tables to filter in ingestion. Specify regex to match the entire table name in database.schema.table format. e.g. to match all tables starting with customer in Customer database and public schema, use the regex 'Customer.public.customer.*'{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
table_pattern.allow [❓ (required if table_pattern is set)]array(string)None
table_pattern.deny [❓ (required if table_pattern is set)]array(string)None
table_pattern.ignoreCase [❓ (required if table_pattern is set)]booleanWhether to ignore case sensitivity during pattern matching.True
view_pattern [✅]AllowDenyPatternRegex patterns for views to filter in ingestion. Note: Defaults to table_pattern if not specified. Specify regex to match the entire view name in database.schema.view format. e.g. to match all views starting with customer in Customer database and public schema, use the regex 'Customer.public.customer.*'{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
view_pattern.allow [❓ (required if view_pattern is set)]array(string)None
view_pattern.deny [❓ (required if view_pattern is set)]array(string)None
view_pattern.ignoreCase [❓ (required if view_pattern is set)]booleanWhether to ignore case sensitivity during pattern matching.True
profiling [✅]GEProfilingConfig{'enabled': False, 'limit': None, 'offset': None, 'report_dropped_profiles': False, 'turn_off_expensive_profiling_metrics': False, 'profile_table_level_only': False, 'include_field_null_count': True, 'include_field_distinct_count': True, 'include_field_min_value': True, 'include_field_max_value': True, 'include_field_mean_value': True, 'include_field_median_value': True, 'include_field_stddev_value': True, 'include_field_quantiles': False, 'include_field_distinct_value_frequencies': False, 'include_field_histogram': False, 'include_field_sample_values': True, 'field_sample_values_limit': 20, 'max_number_of_fields_to_profile': None, 'profile_if_updated_since_days': None, 'profile_table_size_limit': 5, 'profile_table_row_limit': 5000000, 'profile_table_row_count_estimate_only': False, 'max_workers': 20, 'query_combiner_enabled': True, 'catch_exceptions': True, 'partition_profiling_enabled': True, 'partition_datetime': None}
profiling.catch_exceptions [❓ (required if profiling is set)]booleanTrue
profiling.enabled [❓ (required if profiling is set)]booleanWhether profiling should be done.None
profiling.field_sample_values_limit [❓ (required if profiling is set)]integerUpper limit for number of sample values to collect for all columns.20
profiling.include_field_distinct_count [❓ (required if profiling is set)]booleanWhether to profile for the number of distinct values for each column.True
profiling.include_field_distinct_value_frequencies [❓ (required if profiling is set)]booleanWhether to profile for distinct value frequencies.None
profiling.include_field_histogram [❓ (required if profiling is set)]booleanWhether to profile for the histogram for numeric fields.None
profiling.include_field_max_value [❓ (required if profiling is set)]booleanWhether to profile for the max value of numeric columns.True
profiling.include_field_mean_value [❓ (required if profiling is set)]booleanWhether to profile for the mean value of numeric columns.True
profiling.include_field_median_value [❓ (required if profiling is set)]booleanWhether to profile for the median value of numeric columns.True
profiling.include_field_min_value [❓ (required if profiling is set)]booleanWhether to profile for the min value of numeric columns.True
profiling.include_field_null_count [❓ (required if profiling is set)]booleanWhether to profile for the number of nulls for each column.True
profiling.include_field_quantiles [❓ (required if profiling is set)]booleanWhether to profile for the quantiles of numeric columns.None
profiling.include_field_sample_values [❓ (required if profiling is set)]booleanWhether to profile for the sample values for all columns.True
profiling.include_field_stddev_value [❓ (required if profiling is set)]booleanWhether to profile for the standard deviation of numeric columns.True
profiling.limit [❓ (required if profiling is set)]integerMax number of documents to profile. By default, profiles all documents.None
profiling.max_number_of_fields_to_profile [❓ (required if profiling is set)]integerA positive integer that specifies the maximum number of columns to profile for any table. None implies all columns. The cost of profiling goes up significantly as the number of columns to profile goes up.None
profiling.max_workers [❓ (required if profiling is set)]integerNumber of worker threads to use for profiling. Set to 1 to disable.20
profiling.offset [❓ (required if profiling is set)]integerOffset in documents to profile. By default, uses no offset.None
profiling.partition_datetime [❓ (required if profiling is set)]string(date-time)For partitioned datasets profile only the partition which matches the datetime or profile the latest one if not set. Only Bigquery supports this.None
profiling.partition_profiling_enabled [❓ (required if profiling is set)]booleanTrue
profiling.profile_if_updated_since_days [❓ (required if profiling is set)]numberProfile table only if it has been updated since these many number of days. If set to null, no constraint of last modified time for tables to profile. Supported only in snowflake and BigQuery.None
profiling.profile_table_level_only [❓ (required if profiling is set)]booleanWhether to perform profiling at table-level only, or include column-level profiling as well.None
profiling.profile_table_row_count_estimate_only [❓ (required if profiling is set)]booleanUse an approximate query for row count. This will be much faster but slightly less accurate. Only supported for Postgres.None
profiling.profile_table_row_limit [❓ (required if profiling is set)]integerProfile tables only if their row count is less then specified count. If set to null, no limit on the row count of tables to profile. Supported only in snowflake and BigQuery5000000
profiling.profile_table_size_limit [❓ (required if profiling is set)]integerProfile tables only if their size is less then specified GBs. If set to null, no limit on the size of tables to profile. Supported only in snowflake and BigQuery5
profiling.query_combiner_enabled [❓ (required if profiling is set)]booleanThis feature is still experimental and can be disabled if it causes issues. Reduces the total number of queries issued and speeds up profiling by dynamically combining SQL queries where possible.True
profiling.report_dropped_profiles [❓ (required if profiling is set)]booleanWhether to report datasets or dataset columns which were not profiled. Set to True for debugging purposes.None
profiling.turn_off_expensive_profiling_metrics [❓ (required if profiling is set)]booleanWhether to turn off expensive profiling or not. This turns off profiling for quantiles, distinct_value_frequencies, histogram & sample_values. This also limits maximum number of fields being profiled to 10.None
stateful_ingestion [✅]StatefulStaleMetadataRemovalConfigBase specialized config for Stateful Ingestion with stale metadata removal capability.None
stateful_ingestion.enabled [❓ (required if stateful_ingestion is set)]booleanThe type of the ingestion state provider registered with datahub.None
stateful_ingestion.ignore_new_state [❓ (required if stateful_ingestion is set)]booleanIf set to True, ignores the current checkpoint state.None
stateful_ingestion.ignore_old_state [❓ (required if stateful_ingestion is set)]booleanIf set to True, ignores the previous checkpoint state.None
stateful_ingestion.remove_stale_metadata [❓ (required if stateful_ingestion is set)]booleanSoft-deletes the entities present in the last successful run but missing in the current run with stateful_ingestion enabled.True

Code Coordinates

  • Class Name: datahub.ingestion.source.sql.clickhouse.ClickHouseSource
  • Browse on GitHub

Module clickhouse-usage

Certified

Important Capabilities

CapabilityStatusNotes
Data ProfilingOptionally enabled via configuration
Detect Deleted EntitiesEnabled via stateful ingestion

This plugin has the below functionalities -

  1. For a specific dataset this plugin ingests the following statistics -
    1. top n queries.
    2. top users.
    3. usage of each column in the dataset.
  2. Aggregation of these statistics into buckets, by day or hour granularity.

Usage information is computed by querying the system.query_log table. In case you have a cluster or need to apply additional transformation/filters you can create a view and put to the query_log_table setting.

note

This source only does usage statistics. To get the tables, views, and schemas in your ClickHouse warehouse, ingest using the clickhouse source described above.

CLI based Ingestion

Install the Plugin

pip install 'acryl-datahub[clickhouse-usage]'

Starter Recipe

Check out the following recipe to get started with ingestion! See below for full configuration options.

For general pointers on writing and running a recipe, see our main recipe guide.

source:
type: clickhouse-usage
config:
# Coordinates
host_port: db_host:port
platform_instance: dev_cluster
email_domain: acryl.io

# Credentials
username: username
password: "password"

sink:
# sink configs

Config Details

Note that a . is used to denote nested fields in the YAML recipe.

View All Configuration Options
Field [Required]TypeDescriptionDefaultNotes
bucket_duration [✅]EnumSize of the time window to aggregate usage stats.DAY
database [✅]stringdatabase (catalog)None
database_alias [✅]string[Deprecated] Alias to apply to database when ingesting.None
email_domain [✅]stringNone
end_time [✅]string(date-time)Latest date of usage to consider. Default: Current time in UTCNone
format_sql_queries [✅]booleanWhether to format sql queriesNone
host_port [✅]stringClickHouse host URL.localhost:8123
include_materialized_views [✅]booleanTrue
include_operational_stats [✅]booleanWhether to display operational stats.True
include_read_operational_stats [✅]booleanWhether to report read operational stats. Experimental.None
include_table_lineage [✅]booleanWhether table lineage should be ingested.True
include_table_location_lineage [✅]booleanIf the source supports it, include table lineage to the underlying storage location.True
include_tables [✅]booleanWhether tables should be ingested.True
include_top_n_queries [✅]booleanWhether to ingest the top_n_queries.True
include_views [✅]booleanWhether views should be ingested.True
options [✅]objectNone
password [✅]string(password)passwordNone
platform_instance [✅]stringThe instance of the platform that all assets produced by this recipe belong toNone
platform_instance_map [✅]map(str,string)None
protocol [✅]stringNone
query_log_table [✅]stringsystem.query_log
secure [✅]booleanNone
sqlalchemy_uri [✅]stringURI of database to connect to. See https://docs.sqlalchemy.org/en/14/core/engines.html#database-urls. Takes precedence over other connection parameters.None
start_time [✅]string(date-time)Earliest date of usage to consider. Default: Last full day in UTC (or hour, depending on bucket_duration)None
top_n_queries [✅]integerNumber of top queries to save to each table.10
username [✅]stringusernameNone
env [✅]stringThe environment that all assets produced by this connector belong toPROD
domain [✅]map(str,AllowDenyPattern)A class to store allow deny regexesNone
domain.key.allow [❓ (required if domain is set)]array(string)None
domain.key.deny [❓ (required if domain is set)]array(string)None
domain.key.ignoreCase [❓ (required if domain is set)]booleanWhether to ignore case sensitivity during pattern matching.True
profile_pattern [✅]AllowDenyPatternRegex patterns to filter tables (or specific columns) for profiling during ingestion. Note that only tables allowed by the table_pattern will be considered.{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
profile_pattern.allow [❓ (required if profile_pattern is set)]array(string)None
profile_pattern.deny [❓ (required if profile_pattern is set)]array(string)None
profile_pattern.ignoreCase [❓ (required if profile_pattern is set)]booleanWhether to ignore case sensitivity during pattern matching.True
schema_pattern [✅]AllowDenyPatternRegex patterns for schemas to filter in ingestion. Specify regex to only match the schema name. e.g. to match all tables in schema analytics, use the regex 'analytics'{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
schema_pattern.allow [❓ (required if schema_pattern is set)]array(string)None
schema_pattern.deny [❓ (required if schema_pattern is set)]array(string)None
schema_pattern.ignoreCase [❓ (required if schema_pattern is set)]booleanWhether to ignore case sensitivity during pattern matching.True
table_pattern [✅]AllowDenyPatternRegex patterns for tables to filter in ingestion. Specify regex to match the entire table name in database.schema.table format. e.g. to match all tables starting with customer in Customer database and public schema, use the regex 'Customer.public.customer.*'{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
table_pattern.allow [❓ (required if table_pattern is set)]array(string)None
table_pattern.deny [❓ (required if table_pattern is set)]array(string)None
table_pattern.ignoreCase [❓ (required if table_pattern is set)]booleanWhether to ignore case sensitivity during pattern matching.True
user_email_pattern [✅]AllowDenyPatternregex patterns for user emails to filter in usage.{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
user_email_pattern.allow [❓ (required if user_email_pattern is set)]array(string)None
user_email_pattern.deny [❓ (required if user_email_pattern is set)]array(string)None
user_email_pattern.ignoreCase [❓ (required if user_email_pattern is set)]booleanWhether to ignore case sensitivity during pattern matching.True
view_pattern [✅]AllowDenyPatternRegex patterns for views to filter in ingestion. Note: Defaults to table_pattern if not specified. Specify regex to match the entire view name in database.schema.view format. e.g. to match all views starting with customer in Customer database and public schema, use the regex 'Customer.public.customer.*'{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
view_pattern.allow [❓ (required if view_pattern is set)]array(string)None
view_pattern.deny [❓ (required if view_pattern is set)]array(string)None
view_pattern.ignoreCase [❓ (required if view_pattern is set)]booleanWhether to ignore case sensitivity during pattern matching.True
profiling [✅]GEProfilingConfig{'enabled': False, 'limit': None, 'offset': None, 'report_dropped_profiles': False, 'turn_off_expensive_profiling_metrics': False, 'profile_table_level_only': False, 'include_field_null_count': True, 'include_field_distinct_count': True, 'include_field_min_value': True, 'include_field_max_value': True, 'include_field_mean_value': True, 'include_field_median_value': True, 'include_field_stddev_value': True, 'include_field_quantiles': False, 'include_field_distinct_value_frequencies': False, 'include_field_histogram': False, 'include_field_sample_values': True, 'field_sample_values_limit': 20, 'max_number_of_fields_to_profile': None, 'profile_if_updated_since_days': None, 'profile_table_size_limit': 5, 'profile_table_row_limit': 5000000, 'profile_table_row_count_estimate_only': False, 'max_workers': 20, 'query_combiner_enabled': True, 'catch_exceptions': True, 'partition_profiling_enabled': True, 'partition_datetime': None}
profiling.catch_exceptions [❓ (required if profiling is set)]booleanTrue
profiling.enabled [❓ (required if profiling is set)]booleanWhether profiling should be done.None
profiling.field_sample_values_limit [❓ (required if profiling is set)]integerUpper limit for number of sample values to collect for all columns.20
profiling.include_field_distinct_count [❓ (required if profiling is set)]booleanWhether to profile for the number of distinct values for each column.True
profiling.include_field_distinct_value_frequencies [❓ (required if profiling is set)]booleanWhether to profile for distinct value frequencies.None
profiling.include_field_histogram [❓ (required if profiling is set)]booleanWhether to profile for the histogram for numeric fields.None
profiling.include_field_max_value [❓ (required if profiling is set)]booleanWhether to profile for the max value of numeric columns.True
profiling.include_field_mean_value [❓ (required if profiling is set)]booleanWhether to profile for the mean value of numeric columns.True
profiling.include_field_median_value [❓ (required if profiling is set)]booleanWhether to profile for the median value of numeric columns.True
profiling.include_field_min_value [❓ (required if profiling is set)]booleanWhether to profile for the min value of numeric columns.True
profiling.include_field_null_count [❓ (required if profiling is set)]booleanWhether to profile for the number of nulls for each column.True
profiling.include_field_quantiles [❓ (required if profiling is set)]booleanWhether to profile for the quantiles of numeric columns.None
profiling.include_field_sample_values [❓ (required if profiling is set)]booleanWhether to profile for the sample values for all columns.True
profiling.include_field_stddev_value [❓ (required if profiling is set)]booleanWhether to profile for the standard deviation of numeric columns.True
profiling.limit [❓ (required if profiling is set)]integerMax number of documents to profile. By default, profiles all documents.None
profiling.max_number_of_fields_to_profile [❓ (required if profiling is set)]integerA positive integer that specifies the maximum number of columns to profile for any table. None implies all columns. The cost of profiling goes up significantly as the number of columns to profile goes up.None
profiling.max_workers [❓ (required if profiling is set)]integerNumber of worker threads to use for profiling. Set to 1 to disable.20
profiling.offset [❓ (required if profiling is set)]integerOffset in documents to profile. By default, uses no offset.None
profiling.partition_datetime [❓ (required if profiling is set)]string(date-time)For partitioned datasets profile only the partition which matches the datetime or profile the latest one if not set. Only Bigquery supports this.None
profiling.partition_profiling_enabled [❓ (required if profiling is set)]booleanTrue
profiling.profile_if_updated_since_days [❓ (required if profiling is set)]numberProfile table only if it has been updated since these many number of days. If set to null, no constraint of last modified time for tables to profile. Supported only in snowflake and BigQuery.None
profiling.profile_table_level_only [❓ (required if profiling is set)]booleanWhether to perform profiling at table-level only, or include column-level profiling as well.None
profiling.profile_table_row_count_estimate_only [❓ (required if profiling is set)]booleanUse an approximate query for row count. This will be much faster but slightly less accurate. Only supported for Postgres.None
profiling.profile_table_row_limit [❓ (required if profiling is set)]integerProfile tables only if their row count is less then specified count. If set to null, no limit on the row count of tables to profile. Supported only in snowflake and BigQuery5000000
profiling.profile_table_size_limit [❓ (required if profiling is set)]integerProfile tables only if their size is less then specified GBs. If set to null, no limit on the size of tables to profile. Supported only in snowflake and BigQuery5
profiling.query_combiner_enabled [❓ (required if profiling is set)]booleanThis feature is still experimental and can be disabled if it causes issues. Reduces the total number of queries issued and speeds up profiling by dynamically combining SQL queries where possible.True
profiling.report_dropped_profiles [❓ (required if profiling is set)]booleanWhether to report datasets or dataset columns which were not profiled. Set to True for debugging purposes.None
profiling.turn_off_expensive_profiling_metrics [❓ (required if profiling is set)]booleanWhether to turn off expensive profiling or not. This turns off profiling for quantiles, distinct_value_frequencies, histogram & sample_values. This also limits maximum number of fields being profiled to 10.None
stateful_ingestion [✅]StatefulStaleMetadataRemovalConfigBase specialized config for Stateful Ingestion with stale metadata removal capability.None
stateful_ingestion.enabled [❓ (required if stateful_ingestion is set)]booleanThe type of the ingestion state provider registered with datahub.None
stateful_ingestion.ignore_new_state [❓ (required if stateful_ingestion is set)]booleanIf set to True, ignores the current checkpoint state.None
stateful_ingestion.ignore_old_state [❓ (required if stateful_ingestion is set)]booleanIf set to True, ignores the previous checkpoint state.None
stateful_ingestion.remove_stale_metadata [❓ (required if stateful_ingestion is set)]booleanSoft-deletes the entities present in the last successful run but missing in the current run with stateful_ingestion enabled.True

Code Coordinates

  • Class Name: datahub.ingestion.source.usage.clickhouse_usage.ClickHouseUsageSource
  • Browse on GitHub

Questions

If you've got any questions on configuring ingestion for ClickHouse, feel free to ping us on our Slack